#59: Neurofisiología aplicada a la rehabilitación del miembro superior (I): sinergia y soporte de peso

16/03/2023 55 min Temporada 3 Episodio 8
#59: Neurofisiología aplicada a la rehabilitación del miembro superior (I): sinergia y soporte de peso

Escuchar "#59: Neurofisiología aplicada a la rehabilitación del miembro superior (I): sinergia y soporte de peso"

Síntesis del Episodio

En este episodio, damos comienzo a uno de los proyectos más importantes y ambiciosos de Hemispherics. Nada menos que exponer lo fundamental de la neurofisiología aplicada a la rehabilitación del miembro superior tras una lesión neurológica.

Para este episodio, trataré de resumir el conocimiento respecto a la vía reticuloespinal y su relación con la corticoespinal y la recuperación motora y lo hilaré con el conocimiento de la sinergia flexora, los estudios con sistemas de soporte de peso y robóticos para el miembro superior. El objetivo es entender el por qué, el fundamento de los sistemas de soporte de peso y robóticos y qué puede estar ocurriendo en el cerebro para que se produzcan esos fenotipos de miembro superior.

Referencias del episodio:


1. Barker, R. N., Brauer, S., & Carson, R. (2009). Training-induced changes in the pattern of triceps to biceps activation during reaching tasks after chronic and severe stroke. Experimental brain research, 196(4), 483–496. https://doi.org/10.1007/s00221-009-1872-8 (https://pubmed.ncbi.nlm.nih.gov/19504088/).

2. Crocher, V., Fong, J., Bosch, T.J., Tan, Y., Mareels, I.M., & Oetomo, D. (2018). Upper Limb Deweighting Using Underactuated End-Effector-Based Backdrivable Manipulanda. IEEE Robotics and Automation Letters, 3, 2116-2122 (https://www.semanticscholar.org/paper/Upper-Limb-Deweighting-Using-Underactuated-Crocher-Fong/6624232dd6ca4e3bae776f684e5fb9e8acc0fc05).

3. Dewald, J. P., Pope, P. S., Given, J. D., Buchanan, T. S., & Rymer, W. Z. (1995). Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain : a journal of neurology, 118 ( Pt 2), 495–510. https://doi.org/10.1093/brain/118.2.495 (https://pubmed.ncbi.nlm.nih.gov/7735890/).

4. Dewald, J. P., Sheshadri, V., Dawson, M. L., & Beer, R. F. (2001). Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Topics in stroke rehabilitation, 8(1), 1–12. https://doi.org/10.1310/WA7K-NGDF-NHKK-JAGD (https://pubmed.ncbi.nlm.nih.gov/14523747/).

5. Ellis, M. D., Carmona, C., Drogos, J., & Dewald, J. P. A. (2018). Progressive Abduction Loading Therapy with Horizontal-Plane Viscous Resistance Targeting Weakness and Flexion Synergy to Treat Upper Limb Function in Chronic Hemiparetic Stroke: A Randomized Clinical Trial. Frontiers in neurology, 9, 71. https://doi.org/10.3389/fneur.2018.00071 (https://pubmed.ncbi.nlm.nih.gov/29515514/).

6. Fong, J., Crocher, V., Haddara, R., Ackland, D., Galea, M., Tan, Y., & Oetomo, D. (2018). Effect Of Arm Deweighting Using End-Effector Based Robotic Devices On Muscle Activity. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2018, 2470–2474. https://doi.org/10.1109/EMBC.2018.8512773 (https://pubmed.ncbi.nlm.nih.gov/30440908/).

7. Hammerbeck, U., Tyson, S. F., Samraj, P., Hollands, K., Krakauer, J. W., & Rothwell, J. (2021). The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabilitation and neural repair, 35(9), 812–822. https://doi.org/10.1177/15459683211028243 (https://pubmed.ncbi.nlm.nih.gov/34219510/).
8. Kopke, J. V., Hargrove, L. J., & Ellis, M. D. (2021). Coupling of shoulder joint torques in individuals with chronic stroke mirrors controls, with additional non-load-dependent negative effects in a combined-torque task. Journal of neuroengineering and rehabilitation, 18(1), 134. https://doi.org/10.1186/s12984-021-00924-1 (https://pubmed.ncbi.nlm.nih.gov/34496876/).

9. McPherson, J. G., Chen, A., Ellis, M. D., Yao, J., Heckman, C. J., & Dewald, J. P. A. (2018). Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. The Journal of physiology, 596(7), 1211–1225. https://doi.org/10.1113/JP274968 (https://pubmed.ncbi.nlm.nih.gov/29457651/).

10. McPherson, L. M., & Dewald, J. P. A. (2022). Abnormal synergies and associated reactions post-hemiparetic stroke reflect muscle activation patterns of brainstem motor pathways. Frontiers in neurology, 13, 934670. https://doi.org/10.3389/fneur.2022.934670 (https://pubmed.ncbi.nlm.nih.gov/36299276/).

11. Miller, L. C., Ruiz-Torres, R., Stienen, A. H., & Dewald, J. P. (2009). A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE transactions on bio-medical engineering, 56(9), 2312–2317. https://doi.org/10.1109/TBME.2009.2026057 (https://pubmed.ncbi.nlm.nih.gov/19567336/).

12. Miller, L. C., & Dewald, J. P. (2012). Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 123(6), 1216–1225. https://doi.org/10.1016/j.clinph.2012.01.009 (https://pubmed.ncbi.nlm.nih.gov/22364723/).

13. Prange, G. B., Jannink, M. J., Stienen, A. H., van der Kooij, H., Ijzerman, M. J., & Hermens, H. J. (2009). Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabilitation and neural repair, 23(5), 478–485. https://doi.org/10.1177/1545968308328720 (https://pubmed.ncbi.nlm.nih.gov/19190089/).

14. Runnalls, K. D., Anson, G., & Byblow, W. D. (2015). Partial weight support of the arm affects corticomotor selectivity of biceps brachii. Journal of neuroengineering and rehabilitation, 12, 94. https://doi.org/10.1186/s12984-015-0085-6 (https://pubmed.ncbi.nlm.nih.gov/26502933/).

15. Runnalls, K. D., Anson, G., & Byblow, W. D. (2017). Posture interacts with arm weight support to modulate corticomotor excitability to the upper limb. Experimental brain research, 235(1), 97–107. https://doi.org/10.1007/s00221-016-4775-5 (https://pubmed.ncbi.nlm.nih.gov/27639400/).

16. Runnalls, K. D., Ortega-Auriol, P., McMorland, A. J. C., Anson, G., & Byblow, W. D. (2019). Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Experimental brain research, 237(12), 3391–3408. https://doi.org/10.1007/s00221-019-05687-9 (https://pubmed.ncbi.nlm.nih.gov/31728596/).

17. Runnalls, K. D., Anson, G., Wolf, S. L., & Byblow, W. D. (2014). Partial weight support differentially affects corticomotor excitability across muscles of the upper limb. Physiological reports, 2(12), e12183. https://doi.org/10.14814/phy2.12183 (https://pubmed.ncbi.nlm.nih.gov/25501435/).

18. Sukal, T. M., Ellis, M. D., & Dewald, J. P. (2007). Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Experimental brain research, 183(2), 215–223. https://doi.org/10.1007/s00221-007-1029-6 (https://pubmed.ncbi.nlm.nih.gov/17634933/).

19. Wu, W., Fong, J., Crocher, V., Lee, P. V. S., Oetomo, D., Tan, Y., & Ackland, D. C. (2018). Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Journal of biomechanics, 72, 7–16. https://doi.org/10.1016/j.jbiomech.2018.02.019 (https://pubmed.ncbi.nlm.nih.gov/29506759/).

20. Dewald, J.P.A., Ellis, M.D., Acosta, A.M., Sohn, M.H., Plaisier, T.A.M. (2022). Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury. In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_5 (https://link.springer.com/chapter/10.1007/978-3-031-08995-4_5#citeas).

Más episodios del podcast Hemispherics