Escuchar "#88: Constraint-Induced Therapy en ictus. Historia, protocolos y evidencia"
Síntesis del Episodio
En este episodio viajamos desde los orígenes más controvertidos de la Neurociencia moderna —los monos de Silver Spring— hasta la consolidación del protocolo oficial de la Constraint-Induced Therapy (CIMT) de Taub y Morris en la Universidad de Alabama. Repasamos cómo surgió el concepto de learned non-use, cómo se formalizó la terapia, por qué el Paquete de Transferencia fue una revolución conductual, y qué nos dice la evidencia más robusta (incluyendo el EXCITE trial, Premio PEDro al mejor ensayo clínico del año).
También exploramos la evolución del protocolo, desde las 6 horas diarias iniciales hasta el formato actual de 3.5h/día, y cómo el equipo brasileño de Sarah Dos Anjos logró expandir la CIMT al miembro inferior con resultados positivos. Cerramos con una revisión profunda del papel del MAL, del protocolo KEYS y de la extended CIMT para manos pléjicas.
Un episodio imprescindible para cualquier profesional que trate a personas con ictus o quiera comprender cómo una intervención conductual intensiva puede modificar el uso real del brazo afecto… y el cerebro.
Referencias del episodio:
1. Corbetta, D., Sirtori, V., Castellini, G., Moja, L., & Gatti, R. (2015). Constraint-induced movement therapy for upper extremities in people with stroke. The Cochrane database of systematic reviews, 2015(10), CD004433. https://doi.org/10.1002/14651858.CD004433.pub3 (https://pubmed.ncbi.nlm.nih.gov/26446577/).
2. Dos Anjos, S. M., Morris, D. M., & Taub, E. (2020). Constraint-Induced Movement Therapy for Improving Motor Function of the Paretic Lower Extremity After Stroke. American journal of physical medicine & rehabilitation, 99(6), e75–e78. https://doi.org/10.1097/PHM.0000000000001249 (https://pubmed.ncbi.nlm.nih.gov/31246610/).
3. Dos Anjos, S., Morris, D., & Taub, E. (2020). Constraint-Induced Movement Therapy for Lower Extremity Function: Describing the LE-CIMT Protocol. Physical therapy, 100(4), 698–707. https://doi.org/10.1093/ptj/pzz191 (https://pubmed.ncbi.nlm.nih.gov/31899495/).
4. Dos Anjos, S., Bowman, M., & Morris, D. (2025). Effects of a Distributed Form of Constraint-Induced Movement Therapy for Clinical Application: The Keys Treatment Protocol. Brain sciences, 15(1), 87. https://doi.org/10.3390/brainsci15010087 (https://pubmed.ncbi.nlm.nih.gov/39851454/).
5. Gauthier, L. V., Taub, E., Perkins, C., Ortmann, M., Mark, V. W., & Uswatte, G. (2008). Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke, 39(5), 1520–1525. https://doi.org/10.1161/STROKEAHA.107.502229 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2574634/).
6. Hakkennes, S., & Keating, J. L. (2005). Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. The Australian journal of physiotherapy, 51(4), 221–231. https://doi.org/10.1016/s0004-9514(05)70003-9 (https://pubmed.ncbi.nlm.nih.gov/16321129/).
7. Morris, D. M., Taub, E., & Mark, V. W. (2006). Constraint-induced movement therapy: characterizing the intervention protocol. Europa medicophysica, 42(3), 257–268 (https://pubmed.ncbi.nlm.nih.gov/17039224/).
8. Richards, L., Gonzalez Rothi, L. J., Davis, S., Wu, S. S., & Nadeau, S. E. (2006). Limited dose response to constraint-induced movement therapy in patients with chronic stroke. Clinical rehabilitation, 20(12), 1066–1074. https://doi.org/10.1177/0269215506071263 (https://pubmed.ncbi.nlm.nih.gov/17148518/).
9. Sterr, A., Elbert, T., Berthold, I., Kölbel, S., Rockstroh, B., & Taub, E. (2002). Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Archives of physical medicine and rehabilitation, 83(10), 1374–1377. https://doi.org/10.1053/apmr.2002.35108 (https://pubmed.ncbi.nlm.nih.gov/12370871/).
10. Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., 3rd, Fleming, W. C., Nepomuceno, C. S., Connell, J. S., & Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Archives of physical medicine and rehabilitation, 74(4), 347–354 (https://pubmed.ncbi.nlm.nih.gov/8466415/).
11. Taub, E., Uswatte, G., & Pidikiti, R. (1999). Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation--a clinical review. Journal of rehabilitation research and development, 36(3), 237–251 (https://pubmed.ncbi.nlm.nih.gov/10659807/).
12. Taub, E., & Morris, D. M. (2001). Constraint-induced movement therapy to enhance recovery after stroke. Current atherosclerosis reports, 3(4), 279–286. https://doi.org/10.1007/s11883-001-0020-0 (https://pubmed.ncbi.nlm.nih.gov/11389792/).
13. Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., Bryson, C., Delgado, A., & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke, 44(5), 1383–1388. https://doi.org/10.1161/STROKEAHA.111.000559 (https://pubmed.ncbi.nlm.nih.gov/23520237/).
14. Uswatte, G., Taub, E., Morris, D., Barman, J., & Crago, J. (2006). Contribution of the shaping and restraint components of Constraint-Induced Movement therapy to treatment outcome. NeuroRehabilitation, 21(2), 147–156 (https://pubmed.ncbi.nlm.nih.gov/16917161/).
15. Uswatte, G., Taub, E., Bowman, M. H., Delgado, A., Bryson, C., Morris, D. M., Mckay, S., Barman, J., & Mark, V. W. (2018). Rehabilitation of stroke patients with plegic hands: Randomized controlled trial of expanded Constraint-Induced Movement therapy. Restorative neurology and neuroscience, 36(2), 225–244. https://doi.org/10.3233/RNN-170792 (https://pubmed.ncbi.nlm.nih.gov/29526860/).
16. Wolf, S. L., Lecraw, D. E., Barton, L. A., & Jann, B. B. (1989). Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Experimental neurology, 104(2), 125–132. https://doi.org/10.1016/s0014-4886(89)80005-6 (https://pubmed.ncbi.nlm.nih.gov/2707361/).
17. Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K. E., Nichols-Larsen, D., & EXCITE Investigators (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA, 296(17), 2095–2104. https://doi.org/10.1001/jama.296.17.2095 (https://pubmed.ncbi.nlm.nih.gov/17077374/).
También exploramos la evolución del protocolo, desde las 6 horas diarias iniciales hasta el formato actual de 3.5h/día, y cómo el equipo brasileño de Sarah Dos Anjos logró expandir la CIMT al miembro inferior con resultados positivos. Cerramos con una revisión profunda del papel del MAL, del protocolo KEYS y de la extended CIMT para manos pléjicas.
Un episodio imprescindible para cualquier profesional que trate a personas con ictus o quiera comprender cómo una intervención conductual intensiva puede modificar el uso real del brazo afecto… y el cerebro.
Referencias del episodio:
1. Corbetta, D., Sirtori, V., Castellini, G., Moja, L., & Gatti, R. (2015). Constraint-induced movement therapy for upper extremities in people with stroke. The Cochrane database of systematic reviews, 2015(10), CD004433. https://doi.org/10.1002/14651858.CD004433.pub3 (https://pubmed.ncbi.nlm.nih.gov/26446577/).
2. Dos Anjos, S. M., Morris, D. M., & Taub, E. (2020). Constraint-Induced Movement Therapy for Improving Motor Function of the Paretic Lower Extremity After Stroke. American journal of physical medicine & rehabilitation, 99(6), e75–e78. https://doi.org/10.1097/PHM.0000000000001249 (https://pubmed.ncbi.nlm.nih.gov/31246610/).
3. Dos Anjos, S., Morris, D., & Taub, E. (2020). Constraint-Induced Movement Therapy for Lower Extremity Function: Describing the LE-CIMT Protocol. Physical therapy, 100(4), 698–707. https://doi.org/10.1093/ptj/pzz191 (https://pubmed.ncbi.nlm.nih.gov/31899495/).
4. Dos Anjos, S., Bowman, M., & Morris, D. (2025). Effects of a Distributed Form of Constraint-Induced Movement Therapy for Clinical Application: The Keys Treatment Protocol. Brain sciences, 15(1), 87. https://doi.org/10.3390/brainsci15010087 (https://pubmed.ncbi.nlm.nih.gov/39851454/).
5. Gauthier, L. V., Taub, E., Perkins, C., Ortmann, M., Mark, V. W., & Uswatte, G. (2008). Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke, 39(5), 1520–1525. https://doi.org/10.1161/STROKEAHA.107.502229 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2574634/).
6. Hakkennes, S., & Keating, J. L. (2005). Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. The Australian journal of physiotherapy, 51(4), 221–231. https://doi.org/10.1016/s0004-9514(05)70003-9 (https://pubmed.ncbi.nlm.nih.gov/16321129/).
7. Morris, D. M., Taub, E., & Mark, V. W. (2006). Constraint-induced movement therapy: characterizing the intervention protocol. Europa medicophysica, 42(3), 257–268 (https://pubmed.ncbi.nlm.nih.gov/17039224/).
8. Richards, L., Gonzalez Rothi, L. J., Davis, S., Wu, S. S., & Nadeau, S. E. (2006). Limited dose response to constraint-induced movement therapy in patients with chronic stroke. Clinical rehabilitation, 20(12), 1066–1074. https://doi.org/10.1177/0269215506071263 (https://pubmed.ncbi.nlm.nih.gov/17148518/).
9. Sterr, A., Elbert, T., Berthold, I., Kölbel, S., Rockstroh, B., & Taub, E. (2002). Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Archives of physical medicine and rehabilitation, 83(10), 1374–1377. https://doi.org/10.1053/apmr.2002.35108 (https://pubmed.ncbi.nlm.nih.gov/12370871/).
10. Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., 3rd, Fleming, W. C., Nepomuceno, C. S., Connell, J. S., & Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Archives of physical medicine and rehabilitation, 74(4), 347–354 (https://pubmed.ncbi.nlm.nih.gov/8466415/).
11. Taub, E., Uswatte, G., & Pidikiti, R. (1999). Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation--a clinical review. Journal of rehabilitation research and development, 36(3), 237–251 (https://pubmed.ncbi.nlm.nih.gov/10659807/).
12. Taub, E., & Morris, D. M. (2001). Constraint-induced movement therapy to enhance recovery after stroke. Current atherosclerosis reports, 3(4), 279–286. https://doi.org/10.1007/s11883-001-0020-0 (https://pubmed.ncbi.nlm.nih.gov/11389792/).
13. Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., Bryson, C., Delgado, A., & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke, 44(5), 1383–1388. https://doi.org/10.1161/STROKEAHA.111.000559 (https://pubmed.ncbi.nlm.nih.gov/23520237/).
14. Uswatte, G., Taub, E., Morris, D., Barman, J., & Crago, J. (2006). Contribution of the shaping and restraint components of Constraint-Induced Movement therapy to treatment outcome. NeuroRehabilitation, 21(2), 147–156 (https://pubmed.ncbi.nlm.nih.gov/16917161/).
15. Uswatte, G., Taub, E., Bowman, M. H., Delgado, A., Bryson, C., Morris, D. M., Mckay, S., Barman, J., & Mark, V. W. (2018). Rehabilitation of stroke patients with plegic hands: Randomized controlled trial of expanded Constraint-Induced Movement therapy. Restorative neurology and neuroscience, 36(2), 225–244. https://doi.org/10.3233/RNN-170792 (https://pubmed.ncbi.nlm.nih.gov/29526860/).
16. Wolf, S. L., Lecraw, D. E., Barton, L. A., & Jann, B. B. (1989). Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Experimental neurology, 104(2), 125–132. https://doi.org/10.1016/s0014-4886(89)80005-6 (https://pubmed.ncbi.nlm.nih.gov/2707361/).
17. Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K. E., Nichols-Larsen, D., & EXCITE Investigators (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA, 296(17), 2095–2104. https://doi.org/10.1001/jama.296.17.2095 (https://pubmed.ncbi.nlm.nih.gov/17077374/).
Más episodios del podcast Hemispherics
#80: El tracto corticoespinal: All in
24/05/2025
ZARZA Somos ZARZA, la firma de prestigio que esta detras de los grandes proyectos en tecnología de la información.