Escuchar "#81: Neurorrehabilitación somatosensorial en el ictus"
Síntesis del Episodio
En este episodio nos adentramos en una dimensión tan esencial como olvidada de la recuperación neurológica: la sensibilidad. Exploramos con profundidad la neurofisiología de los sistemas sensoriales, los tipos de sensibilidad, las vías implicadas y los déficits somatosensoriales que pueden aparecer tras un ictus. Hablamos de evaluación clínica y neurofisiológica, de escalas, de estereognosia, de patrones exploratorios, y de la implicación cortical tras una lesión. Abordamos también las principales intervenciones terapéuticas, desde la estimulación eléctrica sensitiva (SAES) hasta el entrenamiento activo sensitivo, repasando la evidencia más actual y las claves para una rehabilitación sensitiva eficaz.
Referencias del episodio:
1. Bastos, V. S., Faria, C. D. C. M., Faria-Fortini, I., & Scianni, A. A. (2025). Prevalence of sensory impairments and its contribution to functional disability in individuals with acute stroke: A cross-sectional study. Revue neurologique, 181(3), 210–216. https://doi.org/10.1016/j.neurol.2024.12.001 (https://pubmed.ncbi.nlm.nih.gov/39765442/).
2. Boccuni, L., Meyer, S., Kessner, S. S., De Bruyn, N., Essers, B., Cheng, B., Thomalla, G., Peeters, A., Sunaert, S., Duprez, T., Marinelli, L., Trompetto, C., Thijs, V., & Verheyden, G. (2018). Is There Full or Proportional Somatosensory Recovery in the Upper Limb After Stroke? Investigating Behavioral Outcome and Neural Correlates. Neurorehabilitation and neural repair, 32(8), 691–700. https://doi.org/10.1177/1545968318787060 (https://pubmed.ncbi.nlm.nih.gov/29991331/).
3. Carey, L. M., Matyas, T. A., & Oke, L. E. (1993). Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Archives of physical medicine and rehabilitation, 74(6), 602–611. https://doi.org/10.1016/0003-9993(93)90158-7 (https://pubmed.ncbi.nlm.nih.gov/8503750/).
4. Carey, L. M., Oke, L. E., & Matyas, T. A. (1996). Impaired limb position sense after stroke: a quantitative test for clinical use. Archives of physical medicine and rehabilitation, 77(12), 1271–1278. https://doi.org/10.1016/s0003-9993(96)90192-6 (https://pubmed.ncbi.nlm.nih.gov/8976311/).
5. Carey, L. M., & Matyas, T. A. (2005). Training of somatosensory discrimination after stroke: facilitation of stimulus generalization. American journal of physical medicine & rehabilitation, 84(6), 428–442. https://doi.org/10.1097/01.phm.0000159971.12096.7f (https://pubmed.ncbi.nlm.nih.gov/15905657/).
6. Carey, L., Macdonell, R., & Matyas, T. A. (2011). SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: a randomized controlled trial. Neurorehabilitation and neural repair, 25(4), 304–313. https://doi.org/10.1177/1545968310397705 (https://pubmed.ncbi.nlm.nih.gov/21350049/).
7. Carey, L. M., Abbott, D. F., Lamp, G., Puce, A., Seitz, R. J., & Donnan, G. A. (2016). Same Intervention-Different Reorganization: The Impact of Lesion Location on Training-Facilitated Somatosensory Recovery After Stroke. Neurorehabilitation and neural repair, 30(10), 988–1000. https://doi.org/10.1177/1545968316653836 (https://pubmed.ncbi.nlm.nih.gov/27325624/).
8. Carey, L. M., Matyas, T. A., & Baum, C. (2018). Effects of Somatosensory Impairment on Participation After Stroke. The American journal of occupational therapy : official publication of the American Occupational Therapy Association, 72(3), 7203205100p1–7203205100p10. https://doi.org/10.5014/ajot.2018.025114 (https://pubmed.ncbi.nlm.nih.gov/29689179/).
9. Chilvers, M., Low, T., Rajashekar, D., & Dukelow, S. (2024). White matter disconnection impacts proprioception post-stroke. PloS one, 19(9), e0310312. https://doi.org/10.1371/journal.pone.0310312 (https://pubmed.ncbi.nlm.nih.gov/39264972/).
10. Conforto, A. B., Dos Anjos, S. M., Bernardo, W. M., Silva, A. A. D., Conti, J., Machado, A. G., & Cohen, L. G. (2018). Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and neural repair, 32(10), 863–871. https://doi.org/10.1177/1545968318798943 (https://pmc.ncbi.nlm.nih.gov/articles/PMC6404964/#SM1).
11. Cuesta, C. (2016). El procesamiento de la información somatosensorial y la funcionalidad de la mano en pacientes con daño cerebral adquirido (https://burjcdigital.urjc.es/items/609ccf16-4688-0c23-e053-6f19a8c0ba23).
12. De Bruyn, N., Meyer, S., Kessner, S. S., Essers, B., Cheng, B., Thomalla, G., Peeters, A., Sunaert, S., Duprez, T., Thijs, V., Feys, H., Alaerts, K., & Verheyden, G. (2018). Functional network connectivity is altered in patients with upper limb somatosensory impairments in the acute phase post stroke: A cross-sectional study. PloS one, 13(10), e0205693. https://doi.org/10.1371/journal.pone.0205693 (https://pubmed.ncbi.nlm.nih.gov/30312350/).
13. De Bruyn, N., Saenen, L., Thijs, L., Van Gils, A., Ceulemans, E., Essers, B., Alaerts, K., & Verheyden, G. (2021). Brain connectivity alterations after additional sensorimotor or motor therapy for the upper limb in the early-phase post stroke: a randomized controlled trial. Brain communications, 3(2), fcab074. https://doi.org/10.1093/braincomms/fcab074 (https://pubmed.ncbi.nlm.nih.gov/33937771/).
14. Grant, V. M., Gibson, A., & Shields, N. (2018). Somatosensory stimulation to improve hand and upper limb function after stroke-a systematic review with meta-analyses. Topics in stroke rehabilitation, 25(2), 150–160. https://doi.org/10.1080/10749357.2017.1389054 (https://pubmed.ncbi.nlm.nih.gov/29050540/).
15. Kessner, S. S., Schlemm, E., Cheng, B., Bingel, U., Fiehler, J., Gerloff, C., & Thomalla, G. (2019). Somatosensory Deficits After Ischemic Stroke. Stroke, 50(5), 1116–1123. https://doi.org/10.1161/STROKEAHA.118.023750 (https://pubmed.ncbi.nlm.nih.gov/30943883/).
16. Ladera V, Perea MV. Agnosias auditivas, somáticas y táctiles. Rev Neuropsicol y Neurociencias. 2015;15(1):87–108 (http://revistaneurociencias.com/index.php/RNNN/article/view/82).
17. Laufer, Y., & Elboim-Gabyzon, M. (2011). Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabilitation and neural repair, 25(9), 799–809. https://doi.org/10.1177/1545968310397205 (https://pubmed.ncbi.nlm.nih.gov/21746874/).
18. Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: a window into haptic object recognition. Cognitive psychology, 19(3), 342–368. https://doi.org/10.1016/0010-0285(87)90008-9 (https://pubmed.ncbi.nlm.nih.gov/3608405/).
19. Meyer, S., De Bruyn, N., Lafosse, C., Van Dijk, M., Michielsen, M., Thijs, L., Truyens, V., Oostra, K., Krumlinde-Sundholm, L., Peeters, A., Thijs, V., Feys, H., & Verheyden, G. (2016). Somatosensory Impairments in the Upper Limb Poststroke: Distribution and Association With Motor Function and Visuospatial Neglect. Neurorehabilitation and neural repair, 30(8), 731–742. https://doi.org/10.1177/1545968315624779 (https://pubmed.ncbi.nlm.nih.gov/26719352/).
20. Miguel-Quesada, C., Zaforas, M., Herrera-Pérez, S., Lines, J., Fernández-López, E., Alonso-Calviño, E., Ardaya, M., Soria, F. N., Araque, A., Aguilar, J., & Rosa, J. M. (2023). Astrocytes adjust the dynamic range of cortical network activity to control modality-specific sensory information processing. Cell reports, 42(8), 112950. https://doi.org/10.1016/j.celrep.2023.112950 (https://pubmed.ncbi.nlm.nih.gov/37543946/).
21. Moore, R. T., Piitz, M. A., Singh, N., Dukelow, S. P., & Cluff, T. (2024). The independence of impairments in proprioception and visuomotor adaptation after stroke. Journal of neuroengineering and rehabilitation, 21(1), 81. https://doi.org/10.1186/s12984-024-01360-7 (https://pubmed.ncbi.nlm.nih.gov/38762552/).
22. Opsommer, E., Zwissig, C., Korogod, N., & Weiss, T. (2016). Effectiveness of temporary deafferentation of the arm on somatosensory and motor functions following stroke: a systematic review. JBI database of systematic reviews and implementation reports, 14(12), 226–257. https://doi.org/10.11124/JBISRIR-2016-003231 (https://pubmed.ncbi.nlm.nih.gov/28009677/).
23. Sharififar, S., Shuster, J. J., & Bishop, M. D. (2018). Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Annals of physical and rehabilitation medicine, 61(5), 339–344. https://doi.org/10.1016/j.rehab.2018.06.005 (https://pubmed.ncbi.nlm.nih.gov/29958963/).
24. Stolk-Hornsveld, F., Crow, J. L., Hendriks, E. P., van der Baan, R., & Harmeling-van der Wel, B. C. (2006). The Erasmus MC modifications to the (revised) Nottingham Sensory Assessment: a reliable somatosensory assessment measure for patients with intracranial disorders. Clinical rehabilitation, 20(2), 160–172. https://doi.org/10.1191/0269215506cr932oa (https://pubmed.ncbi.nlm.nih.gov/16541937/).
25. Turville, M., Carey, L. M., Matyas, T. A., & Blennerhassett, J. (2017). Change in Functional Arm Use Is Associated With Somatosensory Skills After Sensory Retraining Poststroke. The American journal of occupational therapy : official publication of the American Occupational Therapy Association, 71(3), 7103190070p1–7103190070p9. https://doi.org/10.5014/ajot.2017.024950 (https://pubmed.ncbi.nlm.nih.gov/28422633/).
26. Turville, M. L., Cahill, L. S., Matyas, T. A., Blennerhassett, J. M., & Carey, L. M. (2019). The effectiveness of somatosensory retraining for improving sensory function in the arm following stroke: a systematic review. Clinical rehabilitation, 33(5), 834–846. https://doi.org/10.1177/0269215519829795 (https://pubmed.ncbi.nlm.nih.gov/30798643/).
27. Villar Ortega, E., Buetler, K. A., Aksöz, E. A., & Marchal-Crespo, L. (2024). Enhancing touch sensibility with sensory electrical stimulation and sensory retraining. Journal of neuroengineering and rehabilitation, 21(1), 79. https://doi.org/10.1186/s12984-024-01371-4 (https://pubmed.ncbi.nlm.nih.gov/38750521/).
28. Yilmazer, C., Boccuni, L., Thijs, L., & Verheyden, G. (2019). Effectiveness of somatosensory interventions on somatosensory, motor and functional outcomes in the upper limb post-stroke: A systematic review and meta-analysis. NeuroRehabilitation, 44(4), 459–477. https://doi.org/10.3233/NRE-192687 (https://pubmed.ncbi.nlm.nih.gov/31256086/).
29. Zamarro-Rodríguez, B. D., Gómez-Martínez, M., & Cuesta-García, C. (2021). Validation of Spanish Erasmus-Modified Nottingham Sensory Assessment Stereognosis Scale in Acquired Brain Damage. International journal of environmental research and public health, 18(23), 12564. https://doi.org/10.3390/ijerph182312564 (https://pubmed.ncbi.nlm.nih.gov/34886287/).
Referencias del episodio:
1. Bastos, V. S., Faria, C. D. C. M., Faria-Fortini, I., & Scianni, A. A. (2025). Prevalence of sensory impairments and its contribution to functional disability in individuals with acute stroke: A cross-sectional study. Revue neurologique, 181(3), 210–216. https://doi.org/10.1016/j.neurol.2024.12.001 (https://pubmed.ncbi.nlm.nih.gov/39765442/).
2. Boccuni, L., Meyer, S., Kessner, S. S., De Bruyn, N., Essers, B., Cheng, B., Thomalla, G., Peeters, A., Sunaert, S., Duprez, T., Marinelli, L., Trompetto, C., Thijs, V., & Verheyden, G. (2018). Is There Full or Proportional Somatosensory Recovery in the Upper Limb After Stroke? Investigating Behavioral Outcome and Neural Correlates. Neurorehabilitation and neural repair, 32(8), 691–700. https://doi.org/10.1177/1545968318787060 (https://pubmed.ncbi.nlm.nih.gov/29991331/).
3. Carey, L. M., Matyas, T. A., & Oke, L. E. (1993). Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Archives of physical medicine and rehabilitation, 74(6), 602–611. https://doi.org/10.1016/0003-9993(93)90158-7 (https://pubmed.ncbi.nlm.nih.gov/8503750/).
4. Carey, L. M., Oke, L. E., & Matyas, T. A. (1996). Impaired limb position sense after stroke: a quantitative test for clinical use. Archives of physical medicine and rehabilitation, 77(12), 1271–1278. https://doi.org/10.1016/s0003-9993(96)90192-6 (https://pubmed.ncbi.nlm.nih.gov/8976311/).
5. Carey, L. M., & Matyas, T. A. (2005). Training of somatosensory discrimination after stroke: facilitation of stimulus generalization. American journal of physical medicine & rehabilitation, 84(6), 428–442. https://doi.org/10.1097/01.phm.0000159971.12096.7f (https://pubmed.ncbi.nlm.nih.gov/15905657/).
6. Carey, L., Macdonell, R., & Matyas, T. A. (2011). SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: a randomized controlled trial. Neurorehabilitation and neural repair, 25(4), 304–313. https://doi.org/10.1177/1545968310397705 (https://pubmed.ncbi.nlm.nih.gov/21350049/).
7. Carey, L. M., Abbott, D. F., Lamp, G., Puce, A., Seitz, R. J., & Donnan, G. A. (2016). Same Intervention-Different Reorganization: The Impact of Lesion Location on Training-Facilitated Somatosensory Recovery After Stroke. Neurorehabilitation and neural repair, 30(10), 988–1000. https://doi.org/10.1177/1545968316653836 (https://pubmed.ncbi.nlm.nih.gov/27325624/).
8. Carey, L. M., Matyas, T. A., & Baum, C. (2018). Effects of Somatosensory Impairment on Participation After Stroke. The American journal of occupational therapy : official publication of the American Occupational Therapy Association, 72(3), 7203205100p1–7203205100p10. https://doi.org/10.5014/ajot.2018.025114 (https://pubmed.ncbi.nlm.nih.gov/29689179/).
9. Chilvers, M., Low, T., Rajashekar, D., & Dukelow, S. (2024). White matter disconnection impacts proprioception post-stroke. PloS one, 19(9), e0310312. https://doi.org/10.1371/journal.pone.0310312 (https://pubmed.ncbi.nlm.nih.gov/39264972/).
10. Conforto, A. B., Dos Anjos, S. M., Bernardo, W. M., Silva, A. A. D., Conti, J., Machado, A. G., & Cohen, L. G. (2018). Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and neural repair, 32(10), 863–871. https://doi.org/10.1177/1545968318798943 (https://pmc.ncbi.nlm.nih.gov/articles/PMC6404964/#SM1).
11. Cuesta, C. (2016). El procesamiento de la información somatosensorial y la funcionalidad de la mano en pacientes con daño cerebral adquirido (https://burjcdigital.urjc.es/items/609ccf16-4688-0c23-e053-6f19a8c0ba23).
12. De Bruyn, N., Meyer, S., Kessner, S. S., Essers, B., Cheng, B., Thomalla, G., Peeters, A., Sunaert, S., Duprez, T., Thijs, V., Feys, H., Alaerts, K., & Verheyden, G. (2018). Functional network connectivity is altered in patients with upper limb somatosensory impairments in the acute phase post stroke: A cross-sectional study. PloS one, 13(10), e0205693. https://doi.org/10.1371/journal.pone.0205693 (https://pubmed.ncbi.nlm.nih.gov/30312350/).
13. De Bruyn, N., Saenen, L., Thijs, L., Van Gils, A., Ceulemans, E., Essers, B., Alaerts, K., & Verheyden, G. (2021). Brain connectivity alterations after additional sensorimotor or motor therapy for the upper limb in the early-phase post stroke: a randomized controlled trial. Brain communications, 3(2), fcab074. https://doi.org/10.1093/braincomms/fcab074 (https://pubmed.ncbi.nlm.nih.gov/33937771/).
14. Grant, V. M., Gibson, A., & Shields, N. (2018). Somatosensory stimulation to improve hand and upper limb function after stroke-a systematic review with meta-analyses. Topics in stroke rehabilitation, 25(2), 150–160. https://doi.org/10.1080/10749357.2017.1389054 (https://pubmed.ncbi.nlm.nih.gov/29050540/).
15. Kessner, S. S., Schlemm, E., Cheng, B., Bingel, U., Fiehler, J., Gerloff, C., & Thomalla, G. (2019). Somatosensory Deficits After Ischemic Stroke. Stroke, 50(5), 1116–1123. https://doi.org/10.1161/STROKEAHA.118.023750 (https://pubmed.ncbi.nlm.nih.gov/30943883/).
16. Ladera V, Perea MV. Agnosias auditivas, somáticas y táctiles. Rev Neuropsicol y Neurociencias. 2015;15(1):87–108 (http://revistaneurociencias.com/index.php/RNNN/article/view/82).
17. Laufer, Y., & Elboim-Gabyzon, M. (2011). Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabilitation and neural repair, 25(9), 799–809. https://doi.org/10.1177/1545968310397205 (https://pubmed.ncbi.nlm.nih.gov/21746874/).
18. Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: a window into haptic object recognition. Cognitive psychology, 19(3), 342–368. https://doi.org/10.1016/0010-0285(87)90008-9 (https://pubmed.ncbi.nlm.nih.gov/3608405/).
19. Meyer, S., De Bruyn, N., Lafosse, C., Van Dijk, M., Michielsen, M., Thijs, L., Truyens, V., Oostra, K., Krumlinde-Sundholm, L., Peeters, A., Thijs, V., Feys, H., & Verheyden, G. (2016). Somatosensory Impairments in the Upper Limb Poststroke: Distribution and Association With Motor Function and Visuospatial Neglect. Neurorehabilitation and neural repair, 30(8), 731–742. https://doi.org/10.1177/1545968315624779 (https://pubmed.ncbi.nlm.nih.gov/26719352/).
20. Miguel-Quesada, C., Zaforas, M., Herrera-Pérez, S., Lines, J., Fernández-López, E., Alonso-Calviño, E., Ardaya, M., Soria, F. N., Araque, A., Aguilar, J., & Rosa, J. M. (2023). Astrocytes adjust the dynamic range of cortical network activity to control modality-specific sensory information processing. Cell reports, 42(8), 112950. https://doi.org/10.1016/j.celrep.2023.112950 (https://pubmed.ncbi.nlm.nih.gov/37543946/).
21. Moore, R. T., Piitz, M. A., Singh, N., Dukelow, S. P., & Cluff, T. (2024). The independence of impairments in proprioception and visuomotor adaptation after stroke. Journal of neuroengineering and rehabilitation, 21(1), 81. https://doi.org/10.1186/s12984-024-01360-7 (https://pubmed.ncbi.nlm.nih.gov/38762552/).
22. Opsommer, E., Zwissig, C., Korogod, N., & Weiss, T. (2016). Effectiveness of temporary deafferentation of the arm on somatosensory and motor functions following stroke: a systematic review. JBI database of systematic reviews and implementation reports, 14(12), 226–257. https://doi.org/10.11124/JBISRIR-2016-003231 (https://pubmed.ncbi.nlm.nih.gov/28009677/).
23. Sharififar, S., Shuster, J. J., & Bishop, M. D. (2018). Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Annals of physical and rehabilitation medicine, 61(5), 339–344. https://doi.org/10.1016/j.rehab.2018.06.005 (https://pubmed.ncbi.nlm.nih.gov/29958963/).
24. Stolk-Hornsveld, F., Crow, J. L., Hendriks, E. P., van der Baan, R., & Harmeling-van der Wel, B. C. (2006). The Erasmus MC modifications to the (revised) Nottingham Sensory Assessment: a reliable somatosensory assessment measure for patients with intracranial disorders. Clinical rehabilitation, 20(2), 160–172. https://doi.org/10.1191/0269215506cr932oa (https://pubmed.ncbi.nlm.nih.gov/16541937/).
25. Turville, M., Carey, L. M., Matyas, T. A., & Blennerhassett, J. (2017). Change in Functional Arm Use Is Associated With Somatosensory Skills After Sensory Retraining Poststroke. The American journal of occupational therapy : official publication of the American Occupational Therapy Association, 71(3), 7103190070p1–7103190070p9. https://doi.org/10.5014/ajot.2017.024950 (https://pubmed.ncbi.nlm.nih.gov/28422633/).
26. Turville, M. L., Cahill, L. S., Matyas, T. A., Blennerhassett, J. M., & Carey, L. M. (2019). The effectiveness of somatosensory retraining for improving sensory function in the arm following stroke: a systematic review. Clinical rehabilitation, 33(5), 834–846. https://doi.org/10.1177/0269215519829795 (https://pubmed.ncbi.nlm.nih.gov/30798643/).
27. Villar Ortega, E., Buetler, K. A., Aksöz, E. A., & Marchal-Crespo, L. (2024). Enhancing touch sensibility with sensory electrical stimulation and sensory retraining. Journal of neuroengineering and rehabilitation, 21(1), 79. https://doi.org/10.1186/s12984-024-01371-4 (https://pubmed.ncbi.nlm.nih.gov/38750521/).
28. Yilmazer, C., Boccuni, L., Thijs, L., & Verheyden, G. (2019). Effectiveness of somatosensory interventions on somatosensory, motor and functional outcomes in the upper limb post-stroke: A systematic review and meta-analysis. NeuroRehabilitation, 44(4), 459–477. https://doi.org/10.3233/NRE-192687 (https://pubmed.ncbi.nlm.nih.gov/31256086/).
29. Zamarro-Rodríguez, B. D., Gómez-Martínez, M., & Cuesta-García, C. (2021). Validation of Spanish Erasmus-Modified Nottingham Sensory Assessment Stereognosis Scale in Acquired Brain Damage. International journal of environmental research and public health, 18(23), 12564. https://doi.org/10.3390/ijerph182312564 (https://pubmed.ncbi.nlm.nih.gov/34886287/).
Más episodios del podcast Hemispherics
#80: El tracto corticoespinal: All in
24/05/2025
#76: Aprendiendo Neurología con el MIR
07/02/2025
ZARZA Somos ZARZA, la firma de prestigio que esta detras de los grandes proyectos en tecnología de la información.