Escuchar "#18: Congreso Mundial de Neurorrehabilitación 2020: S. Soekadar & E. Baaklini | Hemispherics"
Síntesis del Episodio
Para este tercer y último episodio dedicado al congreso mundial de neurorrehabilitación, me voy a valer de dos ponencias que en realidad voy a mezclar ya que el contenido de una está dentro de la otra. Esta unión la hago a propósito de hablar de los BCIs y el papel que están jugando en la investigación y poco a poco en la clínica. Las dos ponencias en cuestión son la de Surjo Soekadar sobre si estamos preparados para los BCIs y la de Edeny Baaklini sobre la estimulación eléctrica epidural.
Referencias del episodio:
(1). Daly (2008). Brain–computer interfaces in neurological rehabilitation (https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(08)70223-0/fulltext).
(2). Benabid (2019). An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration (https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30321-7/fulltext?utm_campaign=TLNExoSkelVid&utm_source=youtube&utm_medium=social).
(3). Soekadar (2015). Brain–machine interfaces in neurorehabilitation of stroke (https://www.sciencedirect.com/science/article/pii/S0969996114003714#f0005).
(4). Soekadar (2016). Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia (https://robotics.sciencemag.org/content/1/1/eaag3296/tab-pdf).
(5). Ramos-Murguialday (2013). Brain–machine interface in chronic stroke rehabilitation: A controlled study (https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.23879).
(6). Donati (2016). Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients (https://www.nature.com/articles/srep30383#Sec6).
(7). Wagner (2018). Targeted neurotechnology restores walking in humans with spinal cord injury (https://www.nature.com/articles/s41586-018-0649-2#additional-information).
(8). Coscia (2019). Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke (https://academic.oup.com/brain/article/142/8/2182/5524504).
Referencias del episodio:
(1). Daly (2008). Brain–computer interfaces in neurological rehabilitation (https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(08)70223-0/fulltext).
(2). Benabid (2019). An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration (https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30321-7/fulltext?utm_campaign=TLNExoSkelVid&utm_source=youtube&utm_medium=social).
(3). Soekadar (2015). Brain–machine interfaces in neurorehabilitation of stroke (https://www.sciencedirect.com/science/article/pii/S0969996114003714#f0005).
(4). Soekadar (2016). Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia (https://robotics.sciencemag.org/content/1/1/eaag3296/tab-pdf).
(5). Ramos-Murguialday (2013). Brain–machine interface in chronic stroke rehabilitation: A controlled study (https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.23879).
(6). Donati (2016). Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients (https://www.nature.com/articles/srep30383#Sec6).
(7). Wagner (2018). Targeted neurotechnology restores walking in humans with spinal cord injury (https://www.nature.com/articles/s41586-018-0649-2#additional-information).
(8). Coscia (2019). Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke (https://academic.oup.com/brain/article/142/8/2182/5524504).
Más episodios del podcast Hemispherics
#80: El tracto corticoespinal: All in
24/05/2025
#76: Aprendiendo Neurología con el MIR
07/02/2025
ZARZA Somos ZARZA, la firma de prestigio que esta detras de los grandes proyectos en tecnología de la información.