Escuchar "Inteligencia Artificial en la Música"
Síntesis del Episodio
Este episodio comenta aplicaciones de la inteligencia artificial (en particular de aprendizaje de máquina) dentro de la música.
Referencias utilizadas dentro de este episodio:
Rodgers, W., Yeung, F., Odindo, C., & Degbey, W. Y. (2021). Artificial intelligence-driven music biometrics influencing customers’ retail buying behavior. Journal of Business Research, 126, 401-414.
Sturm, B. L., Ben-Tal, O., Monaghan, Ú., Collins, N., Herremans, D., Chew, E., ... & Pachet, F. (2019). Machine learning research that matters for music creation: A case study. Journal of New Music Research, 48(1), 36-55.
Garg, A., Chaturvedi, V., Kaur, A. B., Varshney, V., & Parashar, A. (2022). Machine learning model for mapping of music mood and human emotion based on physiological signals. Multimedia Tools and Applications, 1-41.
Folk-rnn is a project funded by the UK Arts and Humanities Research Council, grant no. AH/R004706/1: "Engaging three user communities with applications and outcomes of computational music creativity". The generated tunes and the patterns of use that generated them may be used for research purposes, such as this grant. The original folk-rnn project page, where the algorithm and models were developed, is here: https://github.com/IraKorshunova/folk-rnn. It links to several compositions created by folk-rnn that have been performed live, analysed and so on.
#Podcast #InteligenciaArtificial #MachineLearning #Ciencia #Tecnología #AprendizajeDeMaquina #AprendizajeAutomatico
Referencias utilizadas dentro de este episodio:
Rodgers, W., Yeung, F., Odindo, C., & Degbey, W. Y. (2021). Artificial intelligence-driven music biometrics influencing customers’ retail buying behavior. Journal of Business Research, 126, 401-414.
Sturm, B. L., Ben-Tal, O., Monaghan, Ú., Collins, N., Herremans, D., Chew, E., ... & Pachet, F. (2019). Machine learning research that matters for music creation: A case study. Journal of New Music Research, 48(1), 36-55.
Garg, A., Chaturvedi, V., Kaur, A. B., Varshney, V., & Parashar, A. (2022). Machine learning model for mapping of music mood and human emotion based on physiological signals. Multimedia Tools and Applications, 1-41.
Folk-rnn is a project funded by the UK Arts and Humanities Research Council, grant no. AH/R004706/1: "Engaging three user communities with applications and outcomes of computational music creativity". The generated tunes and the patterns of use that generated them may be used for research purposes, such as this grant. The original folk-rnn project page, where the algorithm and models were developed, is here: https://github.com/IraKorshunova/folk-rnn. It links to several compositions created by folk-rnn that have been performed live, analysed and so on.
#Podcast #InteligenciaArtificial #MachineLearning #Ciencia #Tecnología #AprendizajeDeMaquina #AprendizajeAutomatico
Más episodios del podcast Código Máquina: Inteligencia Artificial y Ciencia de Datos
¿Por qué SÍ y Por qué NO estudiar una Licenciatura o Posgrado en Inteligencia Artificial (IA)?
09/10/2024
Regresión VS Clasificación en Machine Learning (Aprendizaje de Máquina | Aprendizaje Automático)
14/12/2022
Aprendizaje de Máquina Supervisado y NO Supervisado - Machine Learning | Aprendizaje Automático
06/12/2022
Mi Psicologo Artificial y Yo
23/04/2022
ZARZA Somos ZARZA, la firma de prestigio que esta detras de los grandes proyectos en tecnología de la información.